Efficiently transferring information, which is of major importance for almost all engineering systems, requires a data representative appropriate to maintain the density and consistency of the information dispatched. As such a machine-readable representation of data, barcodes are one of the most recognized and powerful instruments of the purpose in every domain. Likewise, from the perspective of engineering, colors are excellent sources of information exchange, since the transmission of color connotes the conveyance of its entire scalar attributes in the same spatial channel component. Exerting colors on barcodes as an effective way of bursting the data conveyance capacity has been an active area of research for over 50 years. Significant progress has been achieved through efforts in this regard. It is also envisagable that the evident evolution in related technologies exoterically empowers the enhancement of color barcode capabilities as capacity and reliability, thereby further encouraging prospected research in this direction.
Herein, a comprehensive survey of the studies on this main area of interest is presented. To help better acquainted with the field, also a taxonomy of the peculiar interference sources and distortion effects is provided, besides, the 3D barcoding process itself and the research areas are described. Most of the relevant works from debut to the present are broadly examined. Rather than presenting a timeline, studies that pertain to similar issues are addressed together. Amongst those related, premising or pivotal ones are preferably cited as far as feasible. Moreover, all perused works are analyzed by the research areas and the results are presented. Also, the issues relatively more prominent as affecting the performance of the whole process are specified. In the conclusion, some of the research subjects that appear open, scarce, or require further elaboration were remarked on as well. It is anticipated this study to contribute to the efforts toward leveraging color in barcodes.