Biometric authentication prospered during the 2010s. Vulnerability to spoofing attacks remains an inherent problem with traditional biometrics. Recently, unobservable physiological signals (e.g., Electroencephalography, Photoplethysmography, Electrocardiography) as biometrics have been considered a potential solution to this problem. In particular, Photoplethysmography (PPG) measures the change of blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals are easy to obtain and contain a wealth of individual cardiac information, researchers have begun to explore its potential applications in information security. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPGbased authentication and discuss these applications' limitations before pointing out future research directions.