In significant cases, the generated voltage needs to be step-up with high conversion ratio by using the DC-DC converter as per the requirement of the load. The drawbacks of traditional boost converter are it required high rating semiconductor devices and have high input current ripple, low efficiency, and reverse recovery voltage of the diodes. Recently, the family of Multilevel Boost Converter suggested and suitable configuration to overcome the above drawbacks. In this article, hybrid DC-DC non-isolated and non-inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) is analyzed in Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) with boundary condition and investigated in detail. The Nx-IMBC circuit combined the features of traditional Interleaved Boost Converter (IBC) and Nx Multilevel Boost Converter (Nx-MBC). The modes of operation, design of Nx-IMBC and the effect of the internal resistance of components are presented. The comparison study with various recent DC-DC converters is presented. The experimental and simulation results are presented with or without perturbation in input voltage, output power and output reference voltage which validates the design, feasibility, and working of the converter.INDEX TERMS DC-DC, high step-up, hybrid converter, interleaved, low voltage stress, low current ripples, multilevel, non-isolated, non-inverting, voltage multiplier.