2011 World Congress on Information and Communication Technologies 2011
DOI: 10.1109/wict.2011.6141231
|View full text |Cite
|
Sign up to set email alerts
|

A novel parallel hybrid K-means-DE-ACO clustering approach for genomic clustering using MapReduce

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
2

Year Published

2013
2013
2020
2020

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 17 publications
0
4
0
2
Order By: Relevance
“…Bhavani (2011) [9] apresenta duas estratégias para realizar agrupamento. Uma envolve DE e K-Means e a outra envolve o uso de DE, ACO e K-Means.…”
Section: Mineração Em Grandes Massas De Dados Utilizandounclassified
See 1 more Smart Citation
“…Bhavani (2011) [9] apresenta duas estratégias para realizar agrupamento. Uma envolve DE e K-Means e a outra envolve o uso de DE, ACO e K-Means.…”
Section: Mineração Em Grandes Massas De Dados Utilizandounclassified
“…Na área de segurança de redes, mineração de dados pode ser utilizada para auxiliar na detecção de invasão de intrusos [6]. No ramo das Ciências Biológicas, a mineração de dados contribui na descoberta de novos tipos de câncer [9]. Na Bioinformática, mineração de dados ajuda na identificação de espécies através da análise de DNA [14].…”
Section: Introductionunclassified
“…H. B. Duan et al [26] stated that the positive feedback strategy and random selection strategy causes its algorithm to slow down and stagnate. In [27], the researcher stated that ACO was discovered to have slow convergence rate. Therefore, in order to overcome ACO drawbacks, a hybrid technique of ACO, DE and AIS is developed by combining several processes from DE and AIS including mutation, crossover, selection and cloning [28], [29] into ACO algorithm.…”
Section: Differential Evolution Immunized Ant Colony Optimizatiomentioning
confidence: 99%
“…This makes the clustering results more accurate, algorithm has better stability. To overcome the problem of big data processing, we will parallelize the improved k-means algorithm, and combining it with MapReduce [11][12][13] framework.…”
Section: Introductionmentioning
confidence: 99%