Standard radiation (RT) therapy does not reliably provide locoregional control for women with multi-node positive and triple-negative (TNBC) breast cancers. We hypothesized that CDK4/6 inhibition (CDK4/6i) would increase the radiosensitivity not only of estrogen receptor positive (ER+) cells, but also TNBC that express retinoblastoma (RB) protein. We found that CDK4/6i radiosensitized RB wild-type TNBC (n=4, rER 1.49 -2.22), but failed to radiosensitize RB-null TNBC (n=3, rER: 0.84 -1.00). RB expression predicted response to CDK4/6i + RT (R 2 =0.84), and radiosensitization was lost in ER+/TNBC cells (rER: 0.88 -1.13) after RB1 knockdown in isogenic and non-isogenic models. CDK4/6i suppressed homologous recombination (HR) in RB wild-type cells, but not in RB-null cells or isogenic models of RB1 loss; HR competency was rescued with RB re-expression. Radiosensitization was independent of non-homologous end joining and the known effects of CDK4/6i on cell cycle arrest. Mechanistically, RB and RAD51 interact in vitro to promote HR repair. CDK4/6i produced RB-dependent radiosensitization in TNBC xenografts, but not in isogenic RB1-null xenografts. Our data provide the preclinical rationale for a clinical trial expanding the use of CDK4/6i + RT to difficult to control RBintact breast cancers (including TNBC) and nominate RB status as a predictive biomarker of therapeutic efficacy.