a b s t r a c tIt was demonstrated in two earlier papers that there exists a real, linear, time-varying transformation that decouples any non-defective linear dynamical system in free vibration in the configuration space. As an extension of this work, the present paper represents the first systematic effort to decouple defective systems. It is shown that the decoupling of defective systems is a rather delicate procedure that depends on the multiplicities of the system eigenvalues. While any defective system can be decoupled with the eigenvalues kept invariant, the geometric multiplicities of these eigenvalues may not be preserved. Several numerical examples are provided to illustrate the theoretical developments.