2015
DOI: 10.1016/j.gi.2015.04.020
|View full text |Cite
|
Sign up to set email alerts
|

A parallel computing strategy for Monte Carlo simulation using groundwater models

Abstract: oriGinal paper ResumenEn este artículo se presentan los resultados de una estrategia de paralelización para reducir el tiempo de ejecución al aplicar la simulación Monte Carlo con un gran número de realizaciones obtenidas utilizando un modelo de flujo y transporte de agua subterránea. Desarrollamos un script en Python usando mpi4py, a fin de ejecutar GWMC y programas relacionados en paralelo aplicando la biblioteca MPI. Nuestro enfoque consiste en calcular las entradas iniciales para cada realización y correr … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 14 publications
0
2
0
Order By: Relevance
“…Running the model for multiple simulated realities resulting from step 2 may be computationally demanding, particularly when the model is complex and requires much computing time. The computation time can be reduced, as the MC method is very suited for parallel computing with multi-core machines and for grid computing technology (Leyva-Suarez et al, 2015). In this way, computation times can be dramatically reduced.…”
Section: Step 1 -Characterise Uncertain Model Inputs With Pdfsmentioning
confidence: 99%
“…Running the model for multiple simulated realities resulting from step 2 may be computationally demanding, particularly when the model is complex and requires much computing time. The computation time can be reduced, as the MC method is very suited for parallel computing with multi-core machines and for grid computing technology (Leyva-Suarez et al, 2015). In this way, computation times can be dramatically reduced.…”
Section: Step 1 -Characterise Uncertain Model Inputs With Pdfsmentioning
confidence: 99%
“…When a Monte Carlo (MC) scheme is implemented, parallel execution of the multiple realizations may significantly reduce simulation times and some studies have focused on MC simulation parallelization (Dong et al 2013; Leyva‐Suárez et al 2015). Inverse modeling and optimization also require a large number of model runs to obtain an optimal solution.…”
Section: Introductionmentioning
confidence: 99%