oriGinal paper
ResumenEn este artículo se presentan los resultados de una estrategia de paralelización para reducir el tiempo de ejecución al aplicar la simulación Monte Carlo con un gran número de realizaciones obtenidas utilizando un modelo de flujo y transporte de agua subterránea. Desarrollamos un script en Python usando mpi4py, a fin de ejecutar GWMC y programas relacionados en paralelo aplicando la biblioteca MPI. Nuestro enfoque consiste en calcular las entradas iniciales para cada realización y correr grupos de estas realizaciones en procesadores separados y después calcular el vector medio y la matriz de covarianza de las mismas. Esta estrategia se aplicó al estudio de un acuífero simplificado en un dominio rectangular de una sola capa. Presentamos los resultados de aceleración y eficiencia para 1000, 2000 y 4000 realizaciones para diferente número de procesadores. Eficiencias de 0,70, 0,76 y 0,75 se obtuvieron para 64, 64 y 96 procesadores, respectivamente. Observamos una mejora ligera del rendimiento a medida que aumenta el número de realizaciones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.