In this paper low power implementation of parallel prefix adders using two phase adiabatic logic has been investigated. A new structure has been proposed for the main blocks of parallel prefix adder. Three parallel prefix adders including Kogge-Stone, Brent-Kung and Ripple Carry have been considered. The effects of power clock frequency and loading capacitance on the new blocks have also been considered. Simulation results using 180nm technology parameters and trapezoidal waveform show an average of 34% power reduction in the main building blocks of the adder at 200MHz clock frequency. This power reduces to 54% for sine wave power clock waveform. This research suggests adiabatic implementation of parallel prefix adders for low power microprocessor and signal processing applications.