2015
DOI: 10.1166/asl.2015.6490
|View full text |Cite
|
Sign up to set email alerts
|

A Performance Comparison of Statistical and Machine Learning Techniques in Learning Time Series Data

Abstract: The task of analyzing and forecasting time-series data is very crucial task as this Time Series Analysis (TSA) task is used for many applications such as Economic Forecasting,

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
6
0
5

Year Published

2018
2018
2024
2024

Publication Types

Select...
8
2

Relationship

1
9

Authors

Journals

citations
Cited by 21 publications
(11 citation statements)
references
References 0 publications
0
6
0
5
Order By: Relevance
“…Beberapa metode dalam statistik untuk melakukan pengukuran akurasi suatu algoritma seperti mean absolute error (MAE), mean square error (MSE), root mean squared error (RMSE), dan mean absolute percentage error (MAPE). Pengukuran algoritma bertujuan untuk mendapatkan nilai terbaik (Haviluddin, Alfred, Obit, Hijazi, & Ibrahim, 2015;Rojas & Rojas, 2011;Susanti et al, 2018). Dalam penelitian ini, metode MSE dipilih untuk mengukur akurasi dengan menggunakan persamaan (1).…”
Section: F Performa Akurasiunclassified
“…Beberapa metode dalam statistik untuk melakukan pengukuran akurasi suatu algoritma seperti mean absolute error (MAE), mean square error (MSE), root mean squared error (RMSE), dan mean absolute percentage error (MAPE). Pengukuran algoritma bertujuan untuk mendapatkan nilai terbaik (Haviluddin, Alfred, Obit, Hijazi, & Ibrahim, 2015;Rojas & Rojas, 2011;Susanti et al, 2018). Dalam penelitian ini, metode MSE dipilih untuk mengukur akurasi dengan menggunakan persamaan (1).…”
Section: F Performa Akurasiunclassified
“…Some methods in statistics to measure the accuracy of an algorithm are mean absolute error (MAE), mean square error (MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). The measurement algorithm aims at attaining the best value [23] [24][25] [26]. In this study, the MSE method was chosen to measure accuracy.…”
Section: F Performance Accuracymentioning
confidence: 99%
“…Along with the development of the informatics field, GA is applied to a variety of issues, such as forecasting, optimization, scheduling, and so on. In the soft computing field, GA is widely used to obtain optimal parameter values [5]- [7]. Some researchers have conducted research regarding scheduling using GA, including Reballo and Casella and Pandey [8].…”
Section: Introductionmentioning
confidence: 99%