Highly effective cancer therapies often face limitations due to acquired resistance and toxicity. Adaptive therapy, an ecologically inspired approach, seeks to control therapeutic resistance and minimize toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life over maximum cell kill. In preparation for a clinical trial in breast cancer, we used large populations of MCF7 cells to rapidly generate endocrine-resistance breast cancer cell line. We then mimicked second line therapy in ER+ breast cancers by treating the endocrine-resistant MCF7 cells in a mouse xenograft model to test adaptive therapy with capecitabine, gemcitabine, or the combination of those two drugs. Dose-modulation adaptive therapy with capecitabine alone increased survival time relative to MTD, but not statistically significant (HR: 0.22, 95% CI 0.043- 1.1 P = 0.065). However, when we alternated the drugs in both dose modulation (HR = 0.11, 95% CI: 0.024 - 0.55, P = 0.007) and intermittent adaptive therapies significantly increased survival time compared to high dose combination therapy (HR = 0.07, 95% CI: 0.013 - 0.42; P = 0.003). Overall, survival time increased with reduced dose for both single drugs (P < 0.01) and combined drugs (P < 0.001). Adaptive therapy protocols resulted in tumors with lower proportions of proliferating cells (P = 0.0026) and more apoptotic cells (P = 0.045). The results show that Adaptive therapy outperforms high-dose therapy in controlling endocrine-resistant breast cancer, favoring slower-growing tumors, and showing promise in two-drug alternating regimens.