The reliable operation of Integrated Circuits (ICs) has become increasingly difficult to achieve in the deep sub-micron (DSM) era. With continuously decreasing device feature sizes, combined with lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations and radiationinduced soft errors. Among these noise sources, soft errors (or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as combinational logic circuits. Also, in the DSM era, process variations are increasing at an alarming rate, making it more difficult to design reliable VLSI circuits. Hence, it is important to efficiently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this dissertation presents several analysis and design techniques with the goal of realizing VLSI circuits which are tolerant to radiation particle strikes and process variations.This dissertation consists of two parts. The first part proposes four analysis and two design approaches to address radiation particle strikes. The analysis techniques for the radiation particle strikes include: an approach to analytically determine the pulse width and the pulse shape of a radiation induced voltage glitch in combinational circuits, a technique to model the dynamic stability of SRAMs, and a 3D device-level analysis of the radiation tolerance of voltage scaled circuits. Experimental results demonstrate that the