The evolving spatial and temporal knowledge about vineyard performance through the use of remote sensing offers new perspectives for vine water status studies. This paper describes the application of aerial thermal imaging to evaluate vine water status to improve irrigation scheduling decisions, water use efficiency, and overall winegrape quality in the Coonawarra viticultural region of South Australia. Airborne infrared images were acquired during the 2016 and 2017 growing seasons in the region of Coonawarra, South Australia. Several thermal indices of crop water status (CWSI, I g , (T c -T a )) were calculated that correlated with conventional soil and vine water status measures (Ψ pd, Ψ s, g s ). CWSI and I g could discriminate between the two cultivars used in this study, Cabernet Sauvignon (CAS) and Shiraz (SHI), as did the conventional water stress measures. The relationship between conventional vine water status measures appeared stronger with CWSI in the warmer and drier season (2016) compared to the cooler and wetter season (2017), where I g and (T c -T a ) showed stronger correlations. The study identified CWSI, I g and (T c -T a ) to be reliable indicators of vine water status under a variety of environmental conditions. This is the first study to report on high resolution vine water status at a regional scale in Australia using a combination of remote and direct sensing methods. This methodology is promising for aerial surveillance of vine water status across multiple blocks and cultivars to inform irrigation scheduling.