Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.