The technology of mounting electric direct drive motors into vehicle wheels has become one of the trends in the field of electric vehicle drive systems. The article presents suggestions for answering the question: How should magnets be mounted on the External Rotor Permanent Magnet Synchronous Machine (ERPMSM) with three phase concentrated windings, to ensure optimal operation of the electric machine in all climatic and weather conditions? The ERPMSM design methodology is discussed. Step by step, a method related to the implementation of subsequent stages of design works and tools (calculation methods) used in this type of work are presented. By means of FEM 2D software, various ERPMSM designs were analyzed in terms of power, torque, rotational speed, cogging torque and torque ripple. The results of numerical calculations related to variations in geometric sizes and application of different base materials for each of ERPMSM machine components are presented. The final parameters of the motor designed for mounting inside the wheel of the vehicle are presented (Power = 53 kW, Torque = 347 Nm; Base speed = 1550 RPM), which correspond to the adopted initial assumptions.