2015 5th International Conference on IT Convergence and Security (ICITCS) 2015
DOI: 10.1109/icitcs.2015.7292925
|View full text |Cite
|
Sign up to set email alerts
|

A Preliminary Study on Deep-Learning Based Screaming Sound Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(8 citation statements)
references
References 4 publications
0
8
0
Order By: Relevance
“…Studies before 2015 generally used Gaussian mixture models or support vector machines to classify audio data points [18,19,21]. More recent works have tested deep-learning classifiers like deep Boltzmann machines and deep belief networks [22,23]. Additionally, recent studies have tested robustness to noise, using both artificially generated noise and naturally occurring environmental noise [17,23].…”
Section: Technical Workmentioning
confidence: 99%
See 2 more Smart Citations
“…Studies before 2015 generally used Gaussian mixture models or support vector machines to classify audio data points [18,19,21]. More recent works have tested deep-learning classifiers like deep Boltzmann machines and deep belief networks [22,23]. Additionally, recent studies have tested robustness to noise, using both artificially generated noise and naturally occurring environmental noise [17,23].…”
Section: Technical Workmentioning
confidence: 99%
“…Previous studies use a wide range of training data. Due to the scarcity of publicly available audio databases, training data sets generally fall into 1 of 2 categories: "self-compiled" [18][19][20][21] or "self-recorded" [17,22,23]. Self-compiled databases use audio samples from sound effect websites, movies, or other sources accessible to researchers.…”
Section: Technical Workmentioning
confidence: 99%
See 1 more Smart Citation
“…In more complicated and complex signals such as speech or music where the signal changes its properties over time, it is evidently more meaningful to refer to the altering frequency content over a smaller time interval than an infinite time interval. Spectral Flux E. R. Siebert et al [29], L. Gerosa et al [2],, M. Z. Zaheer et al [14], R. A. Breguet et al [31] Spectral Tilt L. Gerosa et al [2], R. A. Breguet et al [31], C. Zhang et al [25] Spectral Entropy M. Mark et al [21], A. Pillai et al [8] , N. Hayasaka et al [4], W. Liao et al [23] Signal Bandwidth M. Mark et al [21], W. Liao et al [23] Sub-Band Energy Ratio J. H. L. Hansen et al [1], C. Chan et al [22], M. Z. Zaheer et al [14], C. Zhang et al [25] Linear Prediction P. C. Schön et al [27], N. E. O. Connor et al [30] Prosodic Pitch/Fundamental Frequency M. Mark et al [21], L. H. Arnal et al [7] , C. Chan et al [22], L. Gerosa et al [2], J. H. L. Hansen et al [13], M. Z. Zaheer et al [14], K. Kato [19], B. Uzkent et al [20], W. Liao et al [23] Loudness/Intensity L. Gerosa et al [2], K. Kato [19], C. Zhang et al [25] Rhythm/Duration C. Chan et al [22], K. Kato [19], C. Zhang et al [25] Log Energy N. Hayasaka et al [4], W. Huang et al [3] 0.0% 70 | P a g e www.ijacsa.thesai.org …”
Section: B Analysis Of Scream Sound Featuresmentioning
confidence: 99%
“…M.Z. Zaheer et al [14] achieved 100% scream detection accuracy with GMM technique. Another classification technique used by N. Hayasaka et al [4] achieved an accuracy rate of 99% again with GMM.…”
Section: ) Unsupervised Learning Algorithmsmentioning
confidence: 99%