We describe the flight testing and the integration process of the Microsoft HoloLens 2 as head-mounted display (HMD) with DLR's research helicopter. In the previous work, the HoloLens was integrated into a helicopter simulator. Now, while migrating the HoloLens into a real helicopter, the main challenge was the head tracking of the HoloLens, because it is not designed to operate on moving vehicles. Therefore, the internal head tracking is operated in a limited rotation-only mode, and resulting drift errors are compensated for with an external tracker, several of which have been tested in advance. The fusion is done with a Kalman filter, which contains a non-linear weighting. Internal tracking errors of the HoloLens caused by vehicle accelerations are mitigated with a system identification approach. For calibration, the virtual world is manually aligned using the helicopter's noseboom. The external head tracker (EHT) is largely automatically calibrated using an optimization approach and therefore, works for all trackers and regardless of its mounting positions on vehicle and head. Most of the pretests were carried out in a car, which indicates the flexibility in terms of vehicle type. The flight tests have shown that the overall quality of this HMD solution is very good. The conformal holograms are almost jitter-free, there is no latency, and errors of lower frequencies are identical with the performance that the EHT can provide, which in combination greatly improves immersion. Profiting from almost all features of the HoloLens 2 is a major advantage, especially for rapid research and development. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.