While virtual reality (VR) interfaces have been researched extensively over the last decades, studies on their application in vehicles have only recently advanced. In this paper, we systematically review 12 years of VR research in the context of automated driving (AD), from 2009 to 2020. Due to the multitude of possibilities for studies with regard to VR technology, at present, the pool of findings is heterogeneous and non-transparent. We investigated N = 176 scientific papers of relevant journals and conferences with the goal to analyze the status quo of existing VR studies in AD, and to classify the related literature into application areas. We provide insights into the utilization of VR technology which is applicable at specific level of vehicle automation and for different users (drivers, passengers, pedestrians) and tasks. Results show that most studies focused on designing automotive experiences in VR, safety aspects, and vulnerable road users. Trust, simulator and motion sickness, and external human-machine interfaces (eHMIs) also marked a significant portion of the published papers, however a wide range of different parameters was investigated by researchers. Finally, we discuss a set of open challenges, and give recommendation for future research in automated driving at the VR side of the reality-virtuality continuum.
Increasing vehicle automation presents challenges as drivers of highly automated vehicles become more disengaged from the primary driving task. However, even with fully automated driving, there will still be activities that require interfaces for vehicle-passenger interactions. Windshield displays are a technology with a promising potential for automated driving, as they are able to provide large content areas supporting drivers in non-driving related activities. However, it is still unknown how potential drivers or passengers would use these displays. This work addresses user preferences for windshield displays in automated driving. Participants of a user study (N=63) were presented two levels of automation (conditional and full), and could freely choose preferred positions, content types, as well as size, transparency levels and importance levels of content windows using a simulated “ideal” windshield display. We visualized the results in form of heatmap data which show that user preferences differ with respect to the level of automation, age, gender, or environment aspects. These insights can help designers of interiors and in-vehicle applications to provide a rich user experience in highly automated vehicles.
Cross‐virtuality analytics (XVA) is a novel field of research within immersive analytics and visual analytics. A broad range of heterogeneous devices across the reality–virtuality continuum, along with respective visual metaphors and analysis techniques, are currently becoming available. The goal of XVA is to enable visual analytics that use transitional and collaborative interfaces to seamlessly integrate different devices and support multiple users. In this work, we take a closer look at XVA and analyse the existing body of work for an overview of its current state. We classify the related literature regarding ways of establishing cross‐virtuality by interconnecting different stages in the reality–virtuality continuum, as well as techniques for transitioning and collaborating between the different stages. We provide insights into visualization and interaction techniques employed in current XVA systems. We report on ways of evaluating such systems, and analyse the domains where such systems are becoming available. Finally, we discuss open challenges in XVA, giving directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.