2013
DOI: 10.1016/j.ins.2012.12.051
|View full text |Cite
|
Sign up to set email alerts
|

A review on evolutionary algorithms in Bayesian network learning and inference tasks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
71
0
10

Year Published

2014
2014
2023
2023

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 141 publications
(81 citation statements)
references
References 65 publications
0
71
0
10
Order By: Relevance
“…[42], [43] and [44]), the focus of such works has been to create the network and the links therein. For instance, [45] uses a multi-objective genetic algorithm (MOGA) to evolve dynamic Bayesian networks.…”
Section: F Previous Work and Design Decisionsmentioning
confidence: 99%
“…[42], [43] and [44]), the focus of such works has been to create the network and the links therein. For instance, [45] uses a multi-objective genetic algorithm (MOGA) to evolve dynamic Bayesian networks.…”
Section: F Previous Work and Design Decisionsmentioning
confidence: 99%
“…There are four general categories of algorithms for learning Bayesian networks: search-and-score, constraint-based, hybrid [19] and evolutionary algorithms [20]. Search-and-score methods such as K2 [9] and Greedy Equivalence Search (GES) [8] rely on heuristics to sequentially add, remove, or change the direction of the edges in the graph, G, to which a scoring method is applied.…”
Section: Learning and Scoring Bayesian Networkmentioning
confidence: 99%
“…Metode ini bertujuan untuk memodelkan variabel yang terkait dengan kategori tingkat IPM di provinsi Jawa Barat. Hasil pemodelan berupa struktur graf yang mudah untuk dipahami, terutama dalam melihat adanya keterkaitan antar variabel [10]. Variabel IPM yang berupa variabel kontinu akan dikategorikan pada dua skenario, yaitu eksperimen 1 dengan tiga kategori dan eksperimen 2 dengan empat kategori.…”
Section: Pendahuluanunclassified