Abstract-The aim of this article is to introduce a novel sparse controller design for the temperature control of an experimental walking beam furnace in steel industry. Adequate tracking of temperature references is essential for the quality of the heated slabs. However, the design of the temperature control is hindered by the multivariable (non-square) dynamic behavior of the furnace. These dynamics include significant loop interactions and time delays. Furthermore, a novel datadriven model, based on real life experimental data that relies on a subspace state representation in a closed loop approach is introduced. In the sequel, the derived model is utilized to investigate the controller's structure. By applying the relative gain array approach a decentralized feedback controller is designed. However, in spite of the optimal and sparse design of the controller, there exists interaction between loops. By analyzing the interaction between the inputs-outputs with the Σ2 Gramian-based interaction methodology, a decoupled multivariable controller is implied. The simulation result, based on the experimental modeling of the furnace, shows that the controller can successfully decrease the interaction between the loops and track the reference temperature set-points.