Conspectus
When peptides are mixed with their mirror images in an equimolar
ratio, two-dimensional periodic structural folds can form, in which
extended peptide strands are arrayed with alternating chirality. The
resultant topography class, termed the rippled β-sheet, was
introduced as a theoretical concept by Pauling and Corey in 1953.
Unlike other fundamental protein structural motifs identified around
that time, including the α-helix and the pleated β-sheet,
it took several decades before conclusive experimental data supporting
the proposed rippled β-sheet motif were gained. Much of the
key experimental evidence was provided over the course of the past
decade through the concurrent efforts of our three laboratories. Studies
that focused on developing new self-assembling hydrogel materials
have shown that certain amphiphilic peptides form fibrils and hydrogel
networks that are more rigid and have a higher thermodynamic stability
when made from racemic peptide mixtures as opposed to pure enantiomers.
Related interrogation of assemblies composed of mixtures of
l
- and
d
-amphiphilic peptides confirmed that the resulting
fibrils were composed of alternating
l
/
d
peptides
consistent with rippled β-sheets. It was also demonstrated that
mirror-image amyloid beta (Aβ) could act as a molecular chaperone
to promote oligomer-to-fibril conversion of the natural Aβ enantiomer,
which was found to reduce Aβ neurotoxicity against different
neuronal cell models. With a cross-disciplinary approach that combines
experiment and theory, our three laboratories have demonstrated the
unique biophysical, biochemical, and biological properties that arise
upon mixing of peptide enantiomers, in consequence of rippled β-sheet
formation. In this Account, we give an overview of the early history
of the rippled β-sheet and provide a detailed structural description/definition
of this motif relative to the pleated β-sheet. We then summarize
the key findings, obtained on three unique sets of aggregating mirror-image
peptide pairs through independent efforts of our three laboratories,
and use these results to delineate the landscape of the rippled β-sheet
structural motif to inspire future studies. Peptide sequence parameters
that favor rippled β-sheet assembly are described, along with
the accompanying kinetic and thermodynamic properties, as well as
the resulting emergent physical properties of the assemblies. The
Account then concludes with a brief overview of some key unresolved
challenges in this nascent field. There is much potential for future
applications of this unique supramolecular motif in the realm of materials
design and biomedical research. We hope this Account will stimulate
much-needed discussion of this fascinating structural class to eventually
produce a fully quantitative, rational framework for the molecular
engineering of rippled β-sheets in the future.