Complex phenotypes are of growing importance in agriculture and medicine. In Zea mays, the most widely produced crop in the world (United States Department of Agriculture. World Agricultural Production. United States Department of Agriculture, Foreign Agricultural Service, Washington, 2015), the disease lesion mimic mutants produce regions of discolored or necrotic tissue in otherwise healthy plants. These mutants are of particular interest due to their apparent action on immune response pathways, providing insight into how plants protect against infectious agents. These phenotypes vary considerably as a function of genotype and environmental conditions, making them a rich, though challenging, phenotypic problem. To segment and quantitate these lesions, we present a novel cascade of adaptive algorithms able to accurately segment the diversity of Z. mays lesions. First, multiresolution analysis of the image allows for salient features to be detected at multiple scales. Next, gradient vector diffusion enhances relevant gradient vectors while suppressing noise. Finally, an active contour algorithm refines the lesion boundary, producing a final segmentation for each lesion. We compare the results from this cascade with manual segmentations from human observers, demonstrating that our algorithm is comparable to humans while having the potential to speed analysis by several orders of magnitude.