Abstract. This paper presents limits for stability of projection type schemes when using high order pressure-velocity pairs of same degree. Two high order h/p variational methods encompassing continuous and discontinuous Galerkin formulations are used to explain previously observed lower limits on the time step for projection type schemes to be stable [18], when h-or p-refinement strategies are considered. In addition, the analysis included in this work shows that these stability limits do not depend only on the time step but on the product of the latter and the kinematic viscosity, which is of particular importance in the study of high Reynolds number flows. We show that high order methods prove advantageous in stabilising the simulations when small time steps and low kinematic viscosities are used.Drawing upon this analysis, we demonstrate how the effects of this instability can be reduced in the discontinuous scheme by introducing a stabilisation term into the global system. Finally, we show that these lower limits are compatible with CourantFriedrichs-Lewy (CFL) type restrictions, given that a sufficiently high polynomial order or a mall enough mesh spacing is selected.