Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper aims to reduce friction pair erosion of the clutch in the case of continuous shift; the dynamic separation process of the friction pair is investigated. The temperature of the friction pair, friction torque, and separation speed in the separation process are taken as the research objects, and the dynamics simulation model and finite element thermal coupling simulation model of the clutch separation process are established. The nonlinear dynamic separation characteristics of the friction pair are investigated by comparing and analyzing the effects of control parameters such as rotational speed difference, damping ratio, and lubricant viscosity on the friction torque, friction pair separation speed, separation gap, and contact stress during the separation process. The gap recovery coefficient is proposed as a response indicator for observing the separation process in response to the inability to observe the nonlinear dynamic motion of the friction pair during the separation process and to measure the end time of the separation. Finally, the clutch was subjected to a separation test. The results show that the proposed gap recovery coefficient accurately describes the separation process. The simulation model can simulate the clutch's separation and predict the trend of separation parameters.
This paper aims to reduce friction pair erosion of the clutch in the case of continuous shift; the dynamic separation process of the friction pair is investigated. The temperature of the friction pair, friction torque, and separation speed in the separation process are taken as the research objects, and the dynamics simulation model and finite element thermal coupling simulation model of the clutch separation process are established. The nonlinear dynamic separation characteristics of the friction pair are investigated by comparing and analyzing the effects of control parameters such as rotational speed difference, damping ratio, and lubricant viscosity on the friction torque, friction pair separation speed, separation gap, and contact stress during the separation process. The gap recovery coefficient is proposed as a response indicator for observing the separation process in response to the inability to observe the nonlinear dynamic motion of the friction pair during the separation process and to measure the end time of the separation. Finally, the clutch was subjected to a separation test. The results show that the proposed gap recovery coefficient accurately describes the separation process. The simulation model can simulate the clutch's separation and predict the trend of separation parameters.
In the realm of automotive engineering, the integration of clutch and braking systems has emerged as a paramount area of innovation, promising enhanced efficiency, safety, and performance. This paper proposes a novel pedal system that seamlessly integrates both functions, revolutionizing the driving experience. Through a comprehensive design approach, incorporating advanced materials, ergonomic considerations, and cutting-edge technology, this system aims to streamline vehicle control while optimizing space and weight distribution. By amalgamating the operations of clutch engagement and brake modulation into a singular interface, drivers can expect heightened responsiveness and fluidity in maneuvering, thereby elevating driving dynamics to unprecedented levels[1]. This abstract outlines the conceptual framework, design methodology, and anticipated benefits of the integrated pedal system, heralding a new era in automotive engineering[2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.