2018 IEEE Congress on Evolutionary Computation (CEC) 2018
DOI: 10.1109/cec.2018.8477927
|View full text |Cite
|
Sign up to set email alerts
|

A Survey of Genetic Algorithms for Multi-Label Classification

Abstract: The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 52 publications
0
5
0
3
Order By: Relevance
“…So, in single-label problems, machine learning algorithms have only one possible output prediction. However, some machine learning problems cannot be treated as a single-label problem [27]. There are cases, such as movie classification, where a movie can be classified as action and fiction simultaneously [28].…”
Section: Multi-label and Single-label Learning Methodsmentioning
confidence: 99%
“…So, in single-label problems, machine learning algorithms have only one possible output prediction. However, some machine learning problems cannot be treated as a single-label problem [27]. There are cases, such as movie classification, where a movie can be classified as action and fiction simultaneously [28].…”
Section: Multi-label and Single-label Learning Methodsmentioning
confidence: 99%
“…Os problemas de classificação multirrótulo costumam ser muito mais desafiadores do que os de classificação monorrótulo. Isto se deve as seguintes razões [Gonçalves et al, 2018]:  As aplicações CMR normalmente precisam lidar com um número enorme de combinações de rótulos. Considerando um problema que envolva q rótulos de classe distintos, o tamanho do espaço de resultados em um problema CMR é 2 q , enquanto em um problema de classificação monorrótulo é de apenas q.…”
Section: Como Construir Um Classificador Multirrótulo?unclassified
“…Nos últimos anos diversas estratégias distintas foram propostas na literatura para a construção de classificadores multirrótulo [Gibaja and Ventura, 2014;Gonçalves et al, 2018;Tsoumakas et al, 2010]. Estes métodos podem ser divididos em duas categorias gerais: Adaptação de Algoritmo (AA) e Transformação do Problema (TP).…”
Section: Técnicas De Classificação Multirrótulounclassified
See 1 more Smart Citation
“…Many methods are available to construct multilabel classifiers, such as naïve Bayes [13], decision tree [14], the k-nearest neighbors [15], support vector machines (SVMs) [16], instance-based learning [17], artificial neural networks [18], and genetic algorithm-based methods [19]. The naïve Bayes classifier (NBC) is a learning method incorporating supervision and guidance mechanisms and is simple and efficient [20].…”
Section: Introductionmentioning
confidence: 99%