First proposed in 2009, the classifier chains model (CC) has become one of the most influential algorithms for multi-label classification. It is distinguished by its simple and effective approach to exploit label dependencies. The CC method involves the training of q single-label binary classifiers, where each one is solely responsible for classifying a specific label in {l 1 , …, l q }. These q classifiers are linked in a chain, such that each binary classifier is able to consider the labels predicted by the previous ones as additional information at classification time. The label ordering has a strong effect on predictive accuracy, however it is decided at random and/or combining random orders via an ensemble. A disadvantage of the ensemble approach consists of the fact that it is not suitable when the goal is to generate interpretable classifiers. To tackle this problem, in this work we propose a genetic algorithm for optimizing the label ordering in classifier chains. Experiments on diverse benchmark datasets, followed by the Wilcoxon test for assessing statistical significance, indicate that the proposed strategy produces more accurate classifiers.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.