2018
DOI: 10.1109/tcsii.2018.2815705
|View full text |Cite
|
Sign up to set email alerts
|

A Systematic Design Methodology for Class-AB-Style Ring Amplifiers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 6 publications
0
2
0
Order By: Relevance
“…More importantly, ringamps are more suitable for fine CMOS processes and have application scenarios in various types of ADCs due to the versatility of their structures. In the last decade, many ringamp-based ADC works [24,[29][30][31][32][33][34][35][36][37][38][39] have appeared. Essentially, there are two different directions of the application, one for high resolution (signal-to-noise-and-distortion-ratio (SNDR) ≥ 70 dB) and the other for high speed (sampling rate fs ≥ 500 MHz), such as the dual-deadzone RAMP-based two-step SAR ADC [34], which achieves the highest SNDR for a ringampbased high-resolution ADC, while [33] used a dead zone degeneration technique to realize the fastest sampling rate (fs = 1 GHz) for single-channel implementation.…”
Section: Ring Amplifier Reviewmentioning
confidence: 99%
“…More importantly, ringamps are more suitable for fine CMOS processes and have application scenarios in various types of ADCs due to the versatility of their structures. In the last decade, many ringamp-based ADC works [24,[29][30][31][32][33][34][35][36][37][38][39] have appeared. Essentially, there are two different directions of the application, one for high resolution (signal-to-noise-and-distortion-ratio (SNDR) ≥ 70 dB) and the other for high speed (sampling rate fs ≥ 500 MHz), such as the dual-deadzone RAMP-based two-step SAR ADC [34], which achieves the highest SNDR for a ringampbased high-resolution ADC, while [33] used a dead zone degeneration technique to realize the fastest sampling rate (fs = 1 GHz) for single-channel implementation.…”
Section: Ring Amplifier Reviewmentioning
confidence: 99%
“…Though, a part of the optimization is simulated with the RAMP in its application. The optimization process analyzes each design iteration purely in time domain and does not require any manual tuning, which otherwise might be necessary [15]. This section introduces this optimization process and explains how it is applied to an exemplary design using device-level models.…”
Section: Optimization Processmentioning
confidence: 99%