In this study, a two-electrode electrodeposition technique was employed to grow thin films of antimony selenide (Sb2Se3) on glass/fluorine-doped tin oxide (FTO) substrates. The highest quality thin films were consistently obtained within the range of 1600 mV to 1950 mV. Subsequent electrodeposition experiments were conducted at discrete voltages to produce various layers of thin films. Photoelectrochemical cell (PEC) measurements were performed to characterize the semiconductor material layers, leading to the identification of both p-Type and n-Type conductivity types. Optical absorption spectroscopic analysis revealed energy bandgap values ranging from 1.10 eV to 1.90 eV for AD-deposited Sb2Se3 samples and 1.08 eV to 1.68 eV for heat-treated Sb2Se3 samples, confirming the semiconducting nature of the Sb2Se3 material. Additionally, other characterization techniques, including X-ray diffraction analysis, reveal that the AD-deposited layers are almost amorphous, and heat treatment shows that the material is within the orthorhombic crystalline system. Heat-treated layers grown at ~1740 mV showed highly crystalline material with a bandgap nearing the bulk bandgap of Sb2Se3. Raman spectroscopy identified vibrational modes specific to the Sb2Se3 phase, further confirming its crystallinity. To explore the thin-film morphology, Scanning Electron Microscopy (SEM) was employed, revealing uniformly deposited material composed of grains of varying sizes at different voltages. Energy Dispersive X-ray analysis (EDX) confirmed the presence of antimony and selenium in the material layers.