In this paper, we demonstrate a multi-functional liquid-crystal lens (MFLC-lens) based on dual-layer electrode design. Compared with the previous 3D endoscopes, which use double fixed lens capturing, the proposed LC lens is not only switchable between 2D and 3D modes, but also is able to adjust focus in both modes. The diameter of the MFLC-lens is only 1.42mm, which is much smaller than the available 3D endoscopes with double fixed lenses. To achieve the MFLC-lens, a high-resistance layer needs to be coated on the electrode to generate an ideal gradient electric-field distribution, which can induce a lens-like form of LC molecules. The parameters of high-resistive layer are investigated and discussed with an aim to optimize the performance of the MFLC-lens.