The single-step direct synthesis of tin-silver-copper nanopowders and nanostructured coatings using the flame-based high-temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 3 10 6 S/m for 36 wt % Cu-40 wt % Ag-24 wt % Sn sintered at 2008C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 3008C. V C 2015 American Institute of Chemical Engineers AIChE J, 62: 408-414, 2016