[1] There is widespread recognition that spatially distributed information on soil surface roughness (SSR) is required for hydrological and geomorphological applications. Such information is necessary to describe variability in soil structure, which is highly heterogeneous in time and space, to parameterize hydrology and erosion models and to understand the temporal evolution of the soil surface in response to rainfall. This paper demonstrates how results from semivariogram analysis can quantify key elements of SSR for such applications. Three soil types (silt, silt loam, and silty clay) were used to show how different types of structural variance in SSR evolve during simulated rainfall events. All three soil types were progressively degraded using artificial rainfall to produce a series of roughness states. A calibrated laser profiling instrument was used to measure SSR over a 10 cm  10 cm spatial extent, at a 2 mm resolution. These data were geostatistically analyzed in the context of aggregate breakdown and soil crusting. The results show that such processes are represented by a quantifiable decrease in sill variance, from 7.81 (control) to 0.94 (after 60 min of rainfall). Soil surface features such as soil cracks, tillage lines and erosional areas were quantified by local maxima in semivariance at a given length scale. This research demonstrates that semivariogram analysis can retrieve spatiotemporal variations in soil surface condition; in order to provide information on hydrological pathways. Consequently, geostatistically derived SSR shows strong potential for inclusion as spatial information in hydrology and erosion models to represent complex surface processes at different soil structural scales.Citation: Croft, H., K. Anderson, R. E. Brazier, and N. J. Kuhn (2013), Modeling fine-scale soil surface structure using geostatistic,