An m-dimensional vectorial inverse nodal Sturm-Liouville problem with eigenparameter-dependent boundary conditions is studied. We show that if there exists an infinite sequence ynj,rx,λnj,r2j=1∞ of eigenfunctions which are all vectorial functions of type (CZ), then the potential matrix Qx and A are simultaneously diagonalizable by the same unitary matrix U. Subsequently, some multiplicity results of eigenvalues are obtained.