In this paper, a novel wideband power amplifier (PA) operating in the 2–6 GHz frequency range is presented. The proposed PA design utilizes a combination technique consisting of a distributed equalization technique, multiplexing the power supply network and matching network technique, an LR dissipative structure, and an RC stability network technique to achieve significant bandwidth while maintaining superior gain flatness, high efficiency, high gain, and compact size. For verification, a three-stage PA using the combination technique is designed and implemented in a 0.25 μm GaN high-electron-mobility transistor (HEMT) process. The fabricated prototype demonstrates a saturated output power of 4 W, a power gain of 21 dB, a gain flatness of ±0.6 dB, a power-added efficiency of 39–46%, and a fractional bandwidth of 100% under the operating conditions of drain voltage 28 V (continuous wave) and gate voltage −2.6 V. Moreover, the chip occupies a compact size of only 2.51 mm × 1.97 mm.