Broadband adaptive beamformers have been widely used in many areas due to their ability of filtering signals in space domain as well as in frequency domain. However, the space-time array employed in broadband beamformers requires presteering delays to align the signals coming from a specific direction. Because the presteering delays are direction dependent, it is difficult to make precise delays in practice. A common way to eliminate the presteering delays is imposing constraints on the weight vector of the space-time array. However, the structure of the constraint matrix is not taken into account in the existing methods, leading to a computational complexity of O(N2) when updating the weight vector. In this paper, we describe a new kind of constraint method in time domain that preserves the block diagonal structure of the constraint matrix. Based on this structure, we design an efficient weight vector update algorithm that has a computational complexity of O(N). In addition, the proposed algorithm does not contain matrix operations (only scalar and vector operations are involved), making it easy to be implemented in chips such as FPGA. Moreover, the constraint accuracy of the proposed method is as high as the frequency constraint method when the fractional bandwidth of the signal is smaller than 10%. Numerical experiments show that our method achieves the same performance of the state-of-the-art methods while keeping a simpler algorithm structure and a lower computational cost.