Sorafenib resistance is a major challenge in the treatment of patients with advanced hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) are a large family of non-coding RNA molecules, which is an important mechanism of drug resistance. We previously found that knockdown of miR-25 increased the sensitivity of TRAIL-induced apoptosis in liver cancer stem cells. We aimed to study the effects of miR-25 on sorafenib resistance of HCC and the underlying mechanisms. In the present study, we analyzed the expression of miR-25 between HCC and normal tissues and predicted miR-25 target genes through databases. After transfecting miR-25 mimics, inhibitor or FBXW7 Plasmid, CCK-8 and flow cytometry assay was performed to determine the sorafenib resistance. We performed LC3-dual-fluorescence assay and Western blotting to detect the autophagy levels. The expression of miR-25 was upregulated in human HCC tissues and was associated with tumor pathological grade, clinic staging, and lymphatic metastasis. MiR-25 enhanced sorafenib resistance of HCC cells and autophagy. FBXW7 is the direct target of miR-25. Overexpression of FBXW7 could reverse the increase of sorafenib resistance caused by miR-25 mimics. Our results suggested that miR-25 increased the sorafenib resistance of HCC via inducing autophagy. In addition, miR-25 decreases the expression of FBXW7 protein to regulate autophagy. Therefore, miR-25 may represent a novel therapeutic target for the treatment of HCC.
Colorectal cancer (CRC) is one of the most common malignant tumors. Tumor-associated macrophages (TAMs) promote the progression of CRC, but the mechanism is not completely clear. The present study aimed to reveal the expression and function of FAM198B in TAMs, and the role of FAM198B in mediating macrophage polarization in CRC. The role of FAM198B in macrophage activity, cell cycle, and angiogenesis was evaluated by CCK-8 assay, flow cytometry, and vasculogenic mimicry assay. The effects of FAM198B on macrophage polarization were determined by flow cytometry. The function of FAM198B-mediated macrophage polarization on CRC progression was evaluated by transwell assays. Bioinformatic analyses and rescue assays were performed to identify biological functions and signaling pathways involved in FAM198B regulation of macrophage polarization. Increased FAM198B expression in TAMs is negatively associated with poor CRC prognosis. Functional assays showed that FAM198B promotes M2 macrophage polarization, which leads to CRC cell proliferation, migration, and invasion. Mechanistically, FAM198B regulates the M2 polarization of macrophages by targeting SMAD2, identifying the SMAD2 pathway as a mechanism by which FAM198B promotes CRC progression through regulating macrophage polarization. These findings provide a possible molecular mechanism for FAM198B in TAMs in CRC and suggest that FAM198B may be a novel therapeutic target in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.