Low phosphorus (P) availability is a major constraint for cotton production. Consequently, P-efficient genotypes can improve productivity under conditions where the higher application of P is not economical. This study was conducted to characterize cotton genotypes for P-use efficiency under various P concentrations (0, 10, 20, 40, 80, and 500 μM KH2PO4). The results showed large genotypic variation in five selected traits, such as root dry weight, shoot dry weight, photosynthetic activity, P-utilization efficiency, and P-uptake efficiency. Based on these five selected traits, the genotypes were grouped into three main classes as efficient, moderate efficient, and inefficient genotypes as proposed by different researchers. Most of the genotypes behaved in a similar pattern under different P concentrations. Among the genotypes, Xinluzao-49 and Xinluzao-48 were considered as P efficient while CCRI-64 and Yumian-21 as inefficient genotypes. However, the rest of the genotypes were considered as moderately P efficient. The results prove that a large genetic potential exists in cotton genotypes for P-use efficiency, and the use of P-efficient genotypes for cultivation will reduce the application of phosphatic fertilizers. Furthermore, the use of P-efficient genotypes will improve cotton breeding activities and help in improving the environmental sustainability of cotton production.