This paper presents a review of the possible methods for testing the fire performance properties of reused timber through non-destructive techniques, focusing on structural elements. Evaluating the fire performance of old wooden specimen is necessary to facilitate reuse, in the support of the transition to a circular economy. The use of non-destructive methods minimizes damages to the pieces during the evaluation process. Three angles are reviewed: (1) The properties of wood influencing fire performance, (2) the change of wood properties over time, and (3) the known non-destructive tests. Some properties of wood are known to influence the fire performance, e.g., the density. Of these, there is no evidence of irreversible changes due to the passage of time only. The many different non- and semi- destructive techniques that can be applied to wood seldom relate to these properties, but rather to mechanical properties or geometry. Additionally, accurate measurements are often difficult, while some are only done in laboratories. This review concludes that currently there is no known non-destructive method that permits to estimate the fire performance of a reused timber element compared to a new one. There is a gap of knowledge on the evolution of the fire properties of timber during the use phase of the building, and there are no established methods to test for these properties without destroying a significant portion of the element. Development of non-destructive test methodologies to assess fire properties of timber will expand the market for reused timber to include load carrying timber.