As obligate intracellular parasites, viruses not only hijack cellular machinery, they also deregulate host stress responses for their infection. Human cytomegalovirus (HCMV) modulates the endoplasmic reticulum (ER) stress response, due at least in part to the viral protein pUL38, and one of the consequences is to maintain the viability of infected cells. Consequently, pUL38-deficient virus induces premature cell death during infection. In addition, pUL38 activates mammalian target of rapamycin complex 1 (mTORC1), which may also antagonize other detrimental cellular stresses (N. J. Moorman et al., Cell Host Microbe 3:253-262, 2008). It remains elusive how pUL38 inhibition of cell death is related to mTORC1 activation. In this study, we defined the interplay of the two pUL38 activities. We constructed a series of pUL38 truncation mutants based on the secondary structure prediction and evolutionary conservation of its sequence. We found that the N-terminal 239 residues of pUL38 were necessary and sufficient to block cell death induced by pUL38-deficient virus or by the ER stress inducer tunicamycin. However, this pUL38 domain was unable to activate mTORC1 when expressed alone. Importantly, small-molecule inhibitors of mTORC1, rapamycin or torin 1, did not compromise pUL38 activity to block cell death in isolation or in virus infection. Expression of a constitutively active variant of an mTORC1 activator, Rheb (Ras homolog enriched in brain), could not prevent cell death induced by pUL38-deficient virus. Collectively, we provide genetic and biochemical evidence that pUL38 prevents ER stress-induced cell death independent of its role in mTORC1 activation.