2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)
DOI: 10.1109/pesc.2004.1354810
|View full text |Cite
|
Sign up to set email alerts
|

Active drive control of electric vehicles using a modal state observer

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
6
0
3

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 15 publications
(9 citation statements)
references
References 3 publications
0
6
0
3
Order By: Relevance
“…Für die aktive Dämpfung dieser Schwingungen existieren verschiedene Ansätze. In [1,8,12,15,19,24] werden entsprechende Algorithmen betrachtet und durch Simulation sowie am Prüfstand untersucht. Die Schwingungsdämpfung erfolgt jeweils mittels Modulation des Solldrehmoments der Antriebsmaschine auf Basis der Differenz von Rotorwinkelgeschwindigkeit der Antriebsmaschine und äquivalenter Fahrzeugwinkelgeschwindigkeit.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Für die aktive Dämpfung dieser Schwingungen existieren verschiedene Ansätze. In [1,8,12,15,19,24] werden entsprechende Algorithmen betrachtet und durch Simulation sowie am Prüfstand untersucht. Die Schwingungsdämpfung erfolgt jeweils mittels Modulation des Solldrehmoments der Antriebsmaschine auf Basis der Differenz von Rotorwinkelgeschwindigkeit der Antriebsmaschine und äquivalenter Fahrzeugwinkelgeschwindigkeit.…”
Section: Introductionunclassified
“…Ergänzend dazu wird bei [1,8,19,24] ein Beobachter eingeführt. Dieser dient zur Abschätzung des am Rad an-Abb.…”
Section: Introductionunclassified
“…The electrical machine acts as the interface between domains to transfer useful power, but unwanted disturbances can also be passed between domains, exciting the resonant modes [1,2]. This electro-mechanical interaction can lead to accelerated aging of mechanical components [3,4] and instability in electrical systems [1]. For example, electrical load variation is transferred through the generator as fast electrical torque disturbances, increasing mechanical vibrations and causing speed fluctuations, which in turn pass back through the generator, affecting the electrical network.…”
Section: Introductionmentioning
confidence: 99%
“…Interaction has been observed in a range of systems, for example sub-synchronous resonance in land based power generation [7,8] causing early fatigue of mechanical components [9], challenges for wind power generation [10,11] causing gearbox failure [12], unpredicted faults in industrial processes such as mills [13], excessive vibration in electric and hybrid-electric vehicle drivetrains [2,14] increasing wear [4], and wave induced instability in marine propulsion systems [15]. Methods for mitigating electro-mechanical interaction include minimising gearbox backlash [16], control scheme disturbance rejection [17] and repositioning of resonant modes through design [18].…”
Section: Introductionmentioning
confidence: 99%
“…Based on the application this non ideal torque transmission can lead to serious problems in the drive system such as torque impulses or mechanical vibrations caused by torsional shaft oscillations. Applications where these aforementioned problems could be a matter of particular interest are electric vehicle [7], rolling mill [8] or windmill applications [9].…”
mentioning
confidence: 99%