Penalty methods have proven to be particularly effective for achieving the required C 1 -continuity in the context of multi-patch isogeometric Kirchhoff-Love shells. Due to their conceptual simplicity, these algorithms are readily applicable to the displacement and rotational coupling of trimmed, non-conforming surfaces. However, the accuracy of the resulting solution depends heavily on the choice of penalty parameters. Furthermore, the selection of these coefficients is generally problemdependent and is based on a heuristic approach. Moreover, developing a penalty-like procedure that avoids interface locking while retaining optimal accuracy is still an open question. This work focuses on these challenges. In particular, we devise a penalty-like strategy based on the L 2 -projection of displacement and rotational coupling terms onto a degree-reduced spline space defined on the corresponding interface. Additionally, the penalty factors are completely defined by the problem setup and are constructed to ensure optimality of the method. To demonstrate this, we asses the performance of the proposed numerical framework on a series of non-trimmed and trimmed multipatch benchmarks discretized by non-conforming meshes. We systematically observe a significant gain of accuracy per degree-of-freedom and no interface locking phenomena compared to other penalty-like approaches. Lastly, we perform a static shell analysis of a complex engineering structure, namely the blade of a wind turbine.