High-sensitivity weather radars easily detect nonmeteorological phenomena characterized by weak radar returns. Fireworks are the example presented here. To understand radar observations, an experiment was conducted in which the National Severe Storms Laboratory (NSSL)’s research (3-cm wavelength) dual-polarization radar and a video camera were located at 1 km from fireworks in Norman, Oklahoma. The fireworks from the 4 July 2017 celebration were recorded by both instruments. The experiment is described. Few bursts recorded by the camera are analyzed to obtain the height of the explosion, its maximum diameter, number of stars, and the duration of the visible image. Radar volume scans are examined to characterize the height of the observation, the maximum reflectivity, and its distribution with height. The fireworks location is close to the Terminal Doppler Weather Radar (TDWR) that operates in single polarization at a 5-cm wavelength and monitors hazardous weather over the Oklahoma City airport. A third radar with data from the event is the Weather Surveillance Radar-1988 Doppler (WSR-88D) located in Norman. It has a wavelength of 10 cm and supports technical developments at the Radar Operation Center. Reflectivity factors measured by the three radars are compared to infer the size of dominant scatterers. The polarimetric characteristics of fireworks returns are analyzed. Although these differ from those of precipitation, they are indistinguishable from insect returns. Radar observation of larger fireworks in Fort Worth, Texas, with a WSR-88D is included and compared with the observations of the smaller fireworks in Norman. We expect the detectability of explosions would be similar as of fireworks. Pinpointing locations would be useful to first responders, or air quality forecasters. A benefit of fireworks recognition in weather radar data is that it can prevent contamination of precipitation accumulations.