Long Term Evolution-Metro (LTE-M), as a special communication system for train control, has strict requirements on adjacent channel interference (ACI). According to the 3rd Generation Partnership Project (3GPP) protocol of the European Telecommunications Standards Institute (ETSI) standards, this paper presents the required isolation degree for LTE-M systems to resist ACI. Aiming at the scenario of leaky cable transmission and antenna transmission adopted by the underground LTE-M system of the subway, the isolation degree required for LTE-M system deployment is deduced by combining the channel description with the principle of ACI. For the coexistence of a LTE-M system and an adjacent cellular system in a subway ground scenario, the Monte-Carlo (MC) method is used to simulate several conceivable scenarios of the LTE-M system and the adjacent frequency cellular system. In addition, the throughput loss of the LTE-M system is estimated by considering signal to interference plus noise ratio (SINR). Simulation results demonstrate that adjacent frequency user equipment (UE) has negligible small interference with the LTE-M underground system when using the leaky cable radiation pattern, whereas for the LTE-M ground system, the main interference comes from the adjacent frequency UE to the LTE-M base station (BS). Finally, interference avoidance solutions are presented, which can be utilized as a reference in the design and deployment of LTE-M systems in the rail transit environment.