CO 2 emission has raised worldwide concerns because of its potential effects on climate change, species extinction, and plant nutrition deterioration. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are believed to be of huge potential in CO 2 capture applications because of their advantages such as ultrahigh porosity, boundless chemical tunability, and surface functionality over traditional porous zeolites and activated carbon. In terms of chemistry, there are already many studies devoted to the synthesis of new functional MOFs. Some of the synthesized MOFs have been evaluated for CO 2 capture at laboratory-scale. Several reviews have been published on this topic, but mainly from a chemistry and materials point of view. In this review, the authors focus on the engineering perspective on this topic, with emphases on material evaluation, performance judgment, and process design to address the engineering issues of these materials to be used as adsorbents in industrial CO 2 capture. The current engineering evaluation approaches for MOFs are summarized, in a manner that could also be applied to other adsorbent materials.