Summary
Sleep:wake cycles break down with age, but the causes of this degeneration are not clear. Using a Drosophila model we addressed the contribution of circadian mechanisms to this aged-induced deterioration. We found that in old flies free-running circadian rhythms (behavioral rhythms assayed in constant darkness) have a longer period and an unstable phase before they eventually degenerate. Surprisingly, rhythms are weaker in light:dark cycles and the circadian-regulated morning peak of activity is diminished under these conditions. On a molecular level, aging results in reduced amplitude of circadian clock gene expression in peripheral tissues. However, oscillations of the clock protein PERIOD (PER) are robust and synchronized among different clock neurons, even in very old, arrhythmic flies. To improve rhythms in old flies, we manipulated environmental conditions, which can have direct effects on behavior, and also tested a role for molecules that act downstream of the clock. Coupling temperature cycles with a light:dark schedule or reducing expression of protein kinase A (PKA) improved behavioral rhythms and consolidated sleep. Our data demonstrate that a robust molecular time-keeping mechanism persists in the central pacemaker of aged flies, and reducing PKA can strengthen behavioral rhythms.