2023
DOI: 10.1021/acsami.3c05775
|View full text |Cite
|
Sign up to set email alerts
|

All-Fabric Tactile Sensors Based on Sandwich Structure Design with Tunable Responsiveness

Abstract: Capacitance tactile sensors (TSs) based on electrode distance and contact area variations have been notably employed for various purposes due to their magnificent stress sensitivity. Nevertheless, developing TSs with tunable responsiveness in a broad pressure interval is crucial owing to the trade-off between sensitivity and linear identification range. Herein, a TS including Ag-coated Velcro and spacer fabric is constructed, where its sandwich framework provides a sizable expansion in compression deformation … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 37 publications
0
2
0
Order By: Relevance
“…Inspired by human skin, more and more researchers are working to prepare flexible tactile arrays with skin-like functionality to meet the needs of robotic mechanical claw grip state sensing and have achieved perception capabilities far beyond skin. Over the past decade, tactile array sensors have been extensively developed by utilizing different sensing mechanisms, such as resistive-, capacitive-, and piezoelectric-type mechanisms. Among them, piezoresistive tactile sensors have become a focus of research due to their high load capacity, low mass production cost, low noise, and high tactile sensitivity. Recently, advances in various functional materials, structural designs, , fabrication methods, and signal processing technologies have further accelerated the development of tactile array sensors, which now enable pressure detection beyond the limits of the skin and ultrawide pressure monitoring ranges. However, some inherent characteristics of array-type tactile sensors limit their application in practical applications.…”
Section: Introductionmentioning
confidence: 99%
“…Inspired by human skin, more and more researchers are working to prepare flexible tactile arrays with skin-like functionality to meet the needs of robotic mechanical claw grip state sensing and have achieved perception capabilities far beyond skin. Over the past decade, tactile array sensors have been extensively developed by utilizing different sensing mechanisms, such as resistive-, capacitive-, and piezoelectric-type mechanisms. Among them, piezoresistive tactile sensors have become a focus of research due to their high load capacity, low mass production cost, low noise, and high tactile sensitivity. Recently, advances in various functional materials, structural designs, , fabrication methods, and signal processing technologies have further accelerated the development of tactile array sensors, which now enable pressure detection beyond the limits of the skin and ultrawide pressure monitoring ranges. However, some inherent characteristics of array-type tactile sensors limit their application in practical applications.…”
Section: Introductionmentioning
confidence: 99%
“…The sensitivity of this sensor reaches 0.76 kPa –1 in the range of 0–1 kPa, and the maximum detection range is only around 30 kPa. Su et al proposed the design of a full fabric tactile sensor based on a responsive adjustable sandwich structure. They further balanced the sensitivity and sensing range of the sensor by selecting the stacking of multilayer structures.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, accurately identifying the elastomer deformation is a key issue for understanding the contact state in soft touch. [ 18–27 ]…”
Section: Introductionmentioning
confidence: 99%