Capacitance tactile sensors (TSs) based on electrode distance and contact area variations have been notably employed for various purposes due to their magnificent stress sensitivity. Nevertheless, developing TSs with tunable responsiveness in a broad pressure interval is crucial owing to the trade-off between sensitivity and linear identification range. Herein, a TS including Ag-coated Velcro and spacer fabric is constructed, where its sandwich framework provides a sizable expansion in compression deformation ability. In addition, a multilayered framework composed of the stacked TS from self-adhesive Velcro provides more contact area and significant deformation for stress distribution, further balancing the sensitivity, sensing range, and linearity for smart garment application. By utilizing the overlaid selection of multilayer structures, the all-textile TS demonstrates outstanding sensitivity with a one-layer structure (0.036 kPa–1) over a pressure range of 0.2–5 kPa and retains a sensitivity of 0.002 kPa–1 in a four-layer structure over a wide pressure range of 0.2–110 kPa, representing a significant improvement compared to previous results. The sensor possesses excellent performance in terms of response speed (104 ms), repeatability (10,000 cycles), and flexibility. In addition, its significant applications, involving human motion detection, pliable keyboards, and human–computer interface, are successfully shown. Based on the facile and scalable manufacturing approach, a suitable procedure is presented to construct next-generation wearable electronics.
Yarn structure variation and property improvement have been widely investigated for applications in fancy fabric production. Thus, a novel composite yarn was fabricated by dynamically forcing strand migrations around filaments with varied tension control, regulating the geometric configuration between the filaments and staple fibers. The geometrical principle of wavy-network structure variations of novel composite yarns caused by tension interference and helical migrations between filaments and staple fibers was theoretically analyzed. Subsequently, the coordination of delivery speed ratios and untwisting factors was applied on a ring frame with a delivery roller to control the tensile difference and spiral trajectory, which oscillated the helical convergence between filaments and strands to conduct confirmatory tests. The online observations of the convergent formation in the spinning-triangle zone were technically applied to evaluate the dynamic helical migrations between strands and filaments, and the spiral structural variations of the yarn were caused by various tension difference interference and twist tracks. Experimental results revealed that the novel composite yarn had a network structure with wavy-dense wrapping, and the yarn hairiness, irregularity, tensile, and snarling properties were successively measured to compare the yarn property improvements with other composite yarns. Generally, the systematic tensile oscillation between strands and filaments in the yarn formation zone, which are produced by various delivery speed ratios and untwisting factors, are promising as a novel method for controlling the helical configurations and inter-stress between filaments and staple strands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.