We prepared InGaN light-emitting diodes (LEDs) with the active layers grown from a mixed source of Ga-In-N materials on an n-type GaN substrate by a selective-area growth method and three fabrication steps: photolithography, epitaxial layer growth, and metallization. The preparation followed a previously developed experimental process using apparatus for mixed-source hydride vapor-phase epitaxy (HVPE), which consisted of a multi-graphite boat, for insulating against the high temperature and to control the growth rate of epilayers, filled with the mixed source on the inside and a radio-frequency (RF) heating coil for heating to a high temperature (T > 900°C) and for easy control of temperature outside the source zone. Two types of LEDs were prepared, with In compositions of 11.0 and 6.0% in the InGaN active layer, and room-temperature electroluminescence measurements exhibited a main peak corresponding to the In composition at either 420 or 390 nm. The consecutive growth of InGaN LEDs by the mixed-source HVPE method provides a technique for the production of LEDs with a wide range of In compositions in the active layer.