Even though a patterned sapphire substrate (PSS) has been used for the growth of a high-quality epilayer because of its many advantages, it has not been successfully used to grow an AlN epilayer for ultraviolet (UV) light-emitting diodes (LEDs) on a PSS up to now. We report the growth of a high-quality AlN epilayer on a PSS, as a substrate for the manufacture of UV LEDs, by hydride vapor phase epitaxy (HVPE). The X-ray diffraction (XRD) peaks for the AlN epilayer grown on the PSS indicate that crystalline AlN with a wurtzite structure was grown successfully on the PSS. Furthermore, HVPE combining both in situ HVPE technology and liquid-phase epitaxy (LPE) using a mixed source is proposed as a novel method for the growth of a flat AlN epilayer on a PSS.
High Al-composition AlGaN and AlN epilayers were grown directly on Si(111) substrate by a hydride vapor phase epitaxy (HVPE) method with a melted mixed source in a graphite boat set in a source zone with high temperatures of T = 700 and 800 °C, respectively. The presence of the Ga material in the mixed source of Ga and Al promoted the growth of AlN and AlGaN epilayers in the growth zone. When the temperature in the source zone was 800 °C, the crystalline quality of the AlN and AlGaN epilayers increased as the ratio of Ga to Al increased, and the optimum mix ratio of Ga to Al for the growth of AlN epilayers was approximately 0.35–0.42, obtained from a numerical fitting analysis of the X-ray diffraction (XRD) data for these epilayers. It appears that they can be grown directly by our melted-mixed-source HVPE method in a high-temperature source zone.
A vertical‐type blue light‐emitting diode (BLED) was fabricated without a conventional substrate by the mixed‐source hydride vapor phase epitaxy (HVPE) method, wherein the reactor was equipped with a multi‐graphite boat filled with the mixed source for consecutive growth and regulation of the growth rate inside the source zone and a radio‐frequency (RF) heating‐coil to attain high temperatures (T > 900 °C) outside the source zone, which is different from the existing HVPE equipment. The vertical‐type BLED with an active layer of GaN was fabricated by only four production steps: i) photolithography process for manufacturing the mask, ii) epitaxial layer growth process for consecutive growth using the multi‐graphite boat, iii) sorting process to place the bare chips into the holes in a pocket‐type shadow mask for the deposition of the electrodes, and iv) metallization process. The characteristics of the emitted light and the growth thickness measured by a field emission scanning electron microscope (FE‐SEM) and a transmission electron microscope (TEM) revealed that we succeeded in producing the vertical‐type BLED by the mixed‐source HVPE method.
We prepared InGaN light-emitting diodes (LEDs) with the active layers grown from a mixed source of Ga-In-N materials on an n-type GaN substrate by a selective-area growth method and three fabrication steps: photolithography, epitaxial layer growth, and metallization. The preparation followed a previously developed experimental process using apparatus for mixed-source hydride vapor-phase epitaxy (HVPE), which consisted of a multi-graphite boat, for insulating against the high temperature and to control the growth rate of epilayers, filled with the mixed source on the inside and a radio-frequency (RF) heating coil for heating to a high temperature (T > 900°C) and for easy control of temperature outside the source zone. Two types of LEDs were prepared, with In compositions of 11.0 and 6.0% in the InGaN active layer, and room-temperature electroluminescence measurements exhibited a main peak corresponding to the In composition at either 420 or 390 nm. The consecutive growth of InGaN LEDs by the mixed-source HVPE method provides a technique for the production of LEDs with a wide range of In compositions in the active layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.