Pseudomonas aeruginosa is an opportunistic Gramnegative bacterium that can cause high-morbidity infections. Due to its robust, flexible genome and ability to form biofilms, it can evade and rapidly develop resistance to antibiotics. Cationic conjugated oligoelectrolytes (COEs) have emerged as a promising class of antimicrobials. Herein, we report a series of amidinecontaining COEs with high selectivity for bacteria. From this series, we identified 1b as the most active compound against P. aeruginosa (minimum inhibitory concentration (MIC) = 2 μg/mL) with low cytotoxicity (IC 50 (HepG2) = 1024 μg/mL). The activity of 1b was not affected by known drug-resistant phenotypes of 100 diverse P. aeruginosa isolates. Moreover, 1b is bactericidal with a low propensity for P. aeruginosa to develop resistance. Furthermore, 1b is also able to inhibit biofilm formation at subinhibitory concentrations and kills P. aeruginosa in established biofilms. The in vivo efficacy of 1b was demonstrated in biofilm-associated murine wound infection models.