Mean annual concentration of SO4(-2) in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO(2). Emissions of NO(x) have not changed substantially, but deposition has declined slightly at BBWM. Base cations, NH4+, and Cl(-) concentrations were largely unchanged, with small irregular changes of <1 μeq L(-1) per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June-October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November-May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled NO3- and K(+). They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than SO4(-2), with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH(4))(2)SO(4) enhanced acidification of West Bear Brook's (WB) watershed. Despite the manipulation, NH4+ concentration remained below detection limits at WB, while leaching of NO3- increased. The seasonal pattern for NO3- concentrations in WB, however, remained similar to EB. Mean monthly concentrations of SO4(-2) have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca(2+), Mg(2+), and K(+) due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.